Phase transitions and hysteresis: new perspectives and results

Michela Eleuteri

Università degli Studi di Milano

Supported by the FP7-IDEAS-ERC-StG Grant “EntroPhase” #256872 (P.I. E. Rocca)

Giornata di Studio “Prospettive di sviluppo della matematica applicata in Italia 2013” - Workshop SIMAI Giovani 2013

Roma - March 11, 2013
Plan of the talk

- **Hysteresis: a rate-independent memory effect**
 - The stop and the Prandtl-Ishlinskii operators
 - New theory of oscillating elastoplastic beams and plates
- **Motivation for material fatigue**
- **Evolution equation for the fatigue**
- **The model with phase transition**
- **Thermodynamical consistency**
- **Conclusion**
Plan of the talk

- Hysteresis: a rate-independent memory effect
- The stop and the Prandtl-Ishlinskii operators
 - New theory of oscillating elastoplastic beams and plates
 - Motivation for material fatigue
 - Evolution equation for the fatigue
 - The model with phase transition
 - Thermodynamical consistency
- Conclusion
Plan of the talk

- Hysteresis: a rate-independent memory effect
- The stop and the Prandtl-Ishlinskii operators
- New theory of oscillating elastoplastic beams and plates
 - Motivation for material fatigue
 - Evolution equation for the fatigue
 - The model with phase transition
 - Thermodynamical consistency
 - Conclusion
Plan of the talk

- Hysteresis: a rate-independent memory effect
- The stop and the Prandtl-Ishlinskii operators
- New theory of oscillating elastoplastic beams and plates
- Motivation for material fatigue
 - Evolution equation for the fatigue
 - The model with phase transition
 - Thermodynamical consistency
- Conclusion
Plan of the talk

- Hysteresis: a rate-independent memory effect
- The stop and the Prandtl-Ishlinskii operators
- New theory of oscillating elastoplastic beams and plates
- Motivation for material fatigue
- Evolution equation for the fatigue
 - The model with phase transition
 - Thermodynamical consistency
- Conclusion
Plan of the talk

- Hysteresis: a rate-independent memory effect
- The stop and the Prandtl-Ishlinskii operators
- New theory of oscillating elastoplastic beams and plates
- Motivation for material fatigue
- Evolution equation for the fatigue
- The model with phase transition
- Thermodynamical consistency
- Conclusion
Plan of the talk

- Hysteresis: a rate-independent memory effect
- The stop and the Prandtl-Ishlinskii operators
- New theory of oscillating elastoplastic beams and plates
- Motivation for material fatigue
- Evolution equation for the fatigue
- The model with phase transition
- Thermodynamical consistency
- Conclusion
Plan of the talk

- Hysteresis: a rate-independent memory effect
- The stop and the Prandtl-Ishlinskii operators
- New theory of oscillating elastoplastic beams and plates
- Motivation for material fatigue
- Evolution equation for the fatigue
- The model with phase transition
- Thermodynamical consistency
- Conclusion
Hysteresis: a rate-independent memory effect

- **Hysteresis**: a rate-independent memory effect (multidisciplinary character)

Tipical hysteresis diagram in ferromagnetism (h magnetic field, m magnetization).

Tipical hysteresis diagram in ferromagnetism (h magnetic field, m magnetization).
The stop and the Prandtl-Ishlinskii operators

\[\sigma = \varphi_2 \delta_{r_2}[\epsilon] \]

\[\sigma = \varphi_1 \delta_{r_1}[\epsilon] \]

\[\sigma = \varphi_1 \delta_{r_1}[\epsilon] + \varphi_2 \delta_{r_2}[\epsilon] \]
A classical hysteresis-type model for 1D elastoplasticity

- Introduced by L. Prandtl and A. Yu. Ishlinskii (extensions to the multidimensional case are possible)
- The relation between (one-dimensional) strain ε and stress σ is given in the form of the so-called Prandtl-Ishlinskii operator

$$\sigma = \mathcal{P}[\varepsilon](t) = \int_0^\infty s_r[\varepsilon](t) \varphi(r) \, dr$$

for all $\varepsilon \in W^{1,1}(0, T)$. Here $\varphi > 0$ is a nonnegative weight function not known a priori and s_r represents the one-dimensional elastic-ideally plastic element or stop operator, with the threshold $r > 0$

- Prandtl-Ishlinskii description of elastoplasticity: a superposition of infinitely many stop operators having different thresholds (very imaginative and easily understood) BUT engineers very often prefer classical engineering approaches like the three-dimensional von Mises or Tresca models

- Motivation: the disadvantage that the weight function φ is not known a priori and must be identified
A classical hysteresis-type model for 1D elastoplasticity

- Introduced by L. Prandtl and A. Yu. Ishlinskii (extensions to the multidimensional case are possible)
- The relation between (one-dimensional) strain ε and stress σ is given in the form of the so-called Prandtl-Ishlinskii operator

$$\sigma = \mathcal{P}[\varepsilon](t) = \int_0^\infty s_r[\varepsilon](t) \varphi(r) \, dr$$

for all $\varepsilon \in W^{1,1}(0, T)$. Here $\varphi > 0$ is a nonnegative weight function not known a priori and s_r represents the one-dimensional elastic-ideally plastic element or stop operator, with the threshold $r > 0$

- Prandtl-Ishlinskii description of elastoplasticity: a superposition of infinitely many stop operators having different thresholds (very imaginative and easily understood) BUT engineers very often prefer classical engineering approaches like the three-dimensional von Mises or Tresca models
- Motivation: the disadvantage that the weight function φ is not known a priori and must be identified
A classical hysteresis-type model for 1D elastoplasticity

- Introduced by L. Prandtl and A. Yu. Ishlinskii (extensions to the multidimensional case are possible)
- The relation between (one-dimensional) strain ε and stress σ is given in the form of the so-called Prandtl-Ishlinskii operator

$$\sigma = \mathcal{P}[\varepsilon](t) = \int_0^{\infty} s_r[\varepsilon](t) \varphi(r) \, dr$$

for all $\varepsilon \in W^{1,1}(0, T)$. Here $\varphi > 0$ is a nonnegative weight function not known a priori and s_r represents the one-dimensional elastic-ideally plastic element or stop operator, with the threshold $r > 0$

- Prandtl-Ishlinskii description of elastoplasticity: a superposition of infinitely many stop operators having different thresholds (very imaginative and easily understood) BUT engineers very often prefer classical engineering approaches like the three-dimensional von Mises or Tresca models

- Motivation: the disadvantage that the weight function φ is not known a priori and must be identified
A classical hysteresis-type model for 1D elastoplasticity

- Introduced by L. Prandtl and A. Yu. Ishlinskii (extensions to the multidimensional case are possible)
- The relation between (one-dimensional) strain ε and stress σ is given in the form of the so-called Prandtl-Ishlinskii operator

$$\sigma = \mathcal{P}[\varepsilon](t) = \int_{0}^{\infty} s_r[\varepsilon](t) \varphi(r) \, dr$$

for all $\varepsilon \in W^{1,1}(0, T)$. Here $\varphi > 0$ is a nonnegative weight function not known a priori and s_r represents the one-dimensional elastic-ideally plastic element or stop operator, with the threshold $r > 0$

- Prandtl-Ishlinskii description of elastoplasticity: a superposition of infinitely many stop operators having different thresholds (very imaginative and easily understood) BUT engineers very often prefer classical engineering approaches like the three-dimensional von Mises or Tresca models

- Motivation: the disadvantage that the weight function φ is not known a priori and must be identified
New theory of oscillating elastoplastic beams and plates

Key point: the 3D single-yield von Mises criterion leads after a dimensional reduction to a multi-yield Prandtl-Ishlinskii operator where the weight function φ can be explicitly determined!

A plate section with grey plasticized zone.
New theory of oscillating elastoplastic beams and plates

- **Key point**: the 3D single-yield von Mises criterion leads after a dimensional reduction to a multi-yield Prandtl-Ishlinskii operator where the weight function φ can be explicitly determined!

A plate section with grey plasticized zone.
Motivation for material fatigue

- Plastic deformations lead to energy dissipation and material fatigue, manifested by material softening, heat release, material failure in finite time.

- Very important: take into account the effects of energy exchange and estimating the lifetime of oscillating thermoelastoplastic structures under material fatigue.

- **Aim:** develop a thermodynamically consistent theory of oscillating thermoelastoplastic plates under material fatigue (dynamic approach - different from literature).

- The resulting system from the theory developed by Krejčí & al:

\[
\begin{align*}
\partial_{tt} w - \partial_{tt} \Delta w + D^*_2 \sigma &= g, \\
\sigma &= B \varepsilon + \int_0^\infty s_r Z[\varepsilon](t) \varphi(r) \, dr, \\
\varepsilon &= D_2 w
\end{align*}
\]

- We introduce \(\theta > 0 \) (absolute temperature) and \(m(x,t) \geq 0 \) (material fatigue).
Motivation for material fatigue

- Plastic deformations lead to energy dissipation and material fatigue, manifested by material softening, heat release, material failure in finite time.
- Very important: take into account the effects of energy exchange and estimating the lifetime of oscillating thermoelastoplastic structures under material fatigue.
- **Aim:** develop a thermodynamically consistent theory of oscillating thermoelastoplastic plates under material fatigue (dynamic approach - different from literature).
- The resulting system from the theory developed by Krejčí & al:

\[
\partial_{tt}w - \partial_{tt}\Delta w + D^*\sigma = g,
\]

\[
\sigma = B\varepsilon + \int_{0}^{\infty} s_r Z[\varepsilon](t) \varphi(r) \, dr
\]

\[
\varepsilon = D_2 w
\]

- We introduce \(\theta > 0 \) (absolute temperature) and \(m(x,t) \geq 0 \) (material fatigue).
Motivation for material fatigue

- Plastic deformations lead to energy dissipation and material fatigue, manifested by material softening, heat release, material failure in finite time.
- Very important: take into account the effects of energy exchange and estimating the lifetime of oscillating thermoelastoplastic structures under material fatigue.

Aim: develop a thermodynamically consistent theory of oscillating thermoelastoplastic plates under material fatigue (dynamic approach - different from literature).

The resulting system from the theory developed by Krejčí & al:

\[
\partial_{tt} w - \partial_{tt} \Delta w + D^*_2 \sigma = g, \\
\sigma = B \varepsilon + \int_0^{\infty} s_r z[\varepsilon](t) \varphi(r) \, dr \\
\varepsilon = D_2 w
\]

- We introduce $\theta > 0$ (absolute temperature) and $m(x,t) \geq 0$ (material fatigue).
Motivation for material fatigue

- Plastic deformations lead to energy dissipation and material fatigue, manifested by material softening, heat release, material failure in finite time.
- Very important: take into account the effects of energy exchange and estimating the lifetime of oscillating thermoelastoplastic structures under material fatigue.
- **Aim:** develop a thermodynamically consistent theory of oscillating thermoelastoplastic plates under material fatigue (dynamic approach - different from literature).
- The resulting system from the theory developed by Krejčí & al:

\[
\partial_{tt}w - \partial_{tt}\Delta w + D^*_2\sigma = g ,
\]

\[
\sigma = B\varepsilon + \int_0^\infty s_r Z[\varepsilon](t) \varphi(r) \, dr
\]

\[
\varepsilon = D_2 w
\]

- We introduce $\theta > 0$ (absolute temperature) and $m(x,t) \geq 0$ (material fatigue).
Motivation for material fatigue

- Plastic deformations lead to energy dissipation and material fatigue, manifested by material softening, heat release, material failure in finite time
- Very important: take into account the effects of energy exchange and estimating the lifetime of oscillating thermoelastoplastic structures under material fatigue
- **Aim:** develop a thermodynamically consistent theory of oscillating thermoelastoplastic plates under material fatigue (dynamic approach - different from literature)
- The resulting system from the theory developed by Krejčí & al:

\[
\partial_{tt}w - \partial_{tt}\Delta w + D^*_2\sigma = g, \\
\sigma = B\varepsilon + \int_0^\infty s_rZ[\varepsilon](t)\varphi(r)\,dr \\
\varepsilon = D_2w
\]

- We introduce \(\theta > 0 \) (absolute temperature) and \(m(x,t) \geq 0 \) (material fatigue)
Motivation for material fatigue

- Plastic deformations lead to energy dissipation and material fatigue, manifested by material softening, heat release, material failure in finite time.

- Very important: take into account the effects of energy exchange and estimating the lifetime of oscillating thermoelastoplastic structures under material fatigue.

- **Aim:** develop a thermodynamically consistent theory of oscillating thermoelastoplastic plates under material fatigue (dynamic approach - different from literature).

- The resulting system from the theory developed by Krejčí & al:

\[
\partial_{tt}w - \partial_{tt}\Delta w + D^* \sigma = g, \\
\sigma = B\varepsilon + \int_0^\infty s_rZ[\varepsilon](t) \varphi(r) \, dr \\
\varepsilon = D_2w
\]

- We introduce \(\theta > 0 \) (absolute temperature) and \(m(x, t) \geq 0 \) (material fatigue).
Motivation for material fatigue

- Plastic deformations lead to energy dissipation and material fatigue, manifested by material softening, heat release, material failure in finite time
- Very important: take into account the effects of energy exchange and estimating the lifetime of oscillating thermoelastoplastic structures under material fatigue
- **Aim:** develop a thermodynamically consistent theory of oscillating thermoelastoplastic plates under material fatigue (dynamic approach - different from literature)
- The resulting system from the theory developed by Krejčí & al:

\[\partial_{tt} w - \partial_{tt} \Delta w + \mathbf{D}_2^* \sigma = g,\]

\[\sigma = \mathbf{B}(m) \varepsilon + \int_0^\infty s_r Z[\varepsilon](t) \varphi(\theta, r) dr - \beta (\theta - \theta_c) \mathbf{1}\]

\[\varepsilon = \mathbf{D}_2 w\]

- We introduce \(\theta > 0\) (absolute temperature) and \(m(x, t) \geq 0\) (material fatigue)
Motivation for material fatigue

- Plastic deformations lead to energy dissipation and material fatigue, manifested by material softening, heat release, material failure in finite time
- Very important: take into account the effects of energy exchange and estimating the lifetime of oscillating thermoelastoplastic structures under material fatigue
- **Aim:** develop a thermodynamically consistent theory of oscillating thermoelastoplastic plates under material fatigue (dynamic approach - different from literature)
- The resulting system from the theory developed by Krejčí & al:

\[
\begin{align*}
\partial_{tt} w - \partial_{tt} \Delta w + D_2^* \sigma &= g, \\
\sigma &= B(m) \varepsilon + \int_0^\infty s_{rZ}[\varepsilon](t) \varphi(\theta, r) \, dr - \beta (\theta - \theta_c) \mathbf{1} \\
\varepsilon &= D_2 w
\end{align*}
\]

- We introduce $\theta > 0$ (absolute temperature) and $m(x,t) \geq 0$ (material fatigue); **aim:** get an evolution equation for m consistent from the thermodynamic point of view
Evolution equation for the fatigue

- **Main assumption:** proportionality between rate of fatigue $\partial_t m$ and

$$\mathcal{D} = \langle \sigma, \partial_t \varepsilon \rangle - \partial_t \theta \mathcal{I}[\theta, \varepsilon] - \partial_t \mathcal{F}[\theta, \varepsilon]$$

$$= -\frac{1}{2} \langle B'(m) \varepsilon, \varepsilon \rangle \partial_t m + \int_{0}^{\infty} \langle \partial_t (\varepsilon - s_r Z[\varepsilon]), s_r Z[\varepsilon] \rangle \varphi(\theta, r) \, dr$$

where \mathcal{F} is the specific free energy and \mathcal{I} is the specific entropy

- Justified by the so-called **rainflow method for cyclic fatigue accumulation** in uniaxial processes (counts closed hysteresis loops in the loading history - mechanism of energy dissipation)

- In multiaxial loading processes? Experimental measurements at the point of material failure: strong temperature increase, manifested by energy dissipation peak (temperature tests are in engineering practice for damage analysis in high frequency regimes (e.g. in aircraft industry))

$$\left(\frac{1}{C(\theta)} + \frac{1}{2} \langle B'(m) \varepsilon, \varepsilon \rangle \right) \partial_t m = \int_{0}^{\infty} \langle \partial_t (\varepsilon - s_r Z[\varepsilon]), s_r Z[\varepsilon] \rangle \varphi(\theta, r) \, dr$$

- $B'(m) \leq 0$ softening \Rightarrow singularity! Material failure in finite time!
Evolution equation for the fatigue

- **Main assumption:** proportionality between rate of fatigue $\partial_t m$ and

$$
\mathcal{D} = \langle \sigma, \partial_t \varepsilon \rangle - \partial_t \theta \mathcal{I}[\theta, \varepsilon] - \partial_t \mathcal{F}[\theta, \varepsilon]
= -\frac{1}{2} \langle B'(m) \varepsilon, \varepsilon \rangle \partial_t m + \int_0^\infty \langle \partial_t (\varepsilon - s_r Z[\varepsilon]), s_r Z[\varepsilon] \rangle \varphi(\theta, r) \, dr
$$

where \mathcal{F} is the **specific free energy** and \mathcal{I} is the **specific entropy**

- Justified by the so-called **rainflow method for cyclic fatigue accumulation** in uniaxial processes (counts closed hysteresis loops in the loading history - mechanism of energy dissipation)

- In **multiaxial loading processes**? Experimental measurements at the point of material failure: strong temperature increase, manifested by energy dissipation peak (temperature tests are in engineering practice for damage analysis in high frequency regimes (e.g. in aircraft industry))

$$
\left(\frac{1}{C(\theta)} + \frac{1}{2} \langle B'(m) \varepsilon, \varepsilon \rangle \right) \partial_t m = \int_0^\infty \langle \partial_t (\varepsilon - s_r Z[\varepsilon]), s_r Z[\varepsilon] \rangle \varphi(\theta, r) \, dr
$$

- $B'(m) \leq 0$ softening \Rightarrow singularity! Material failure in finite time!
Evolution equation for the fatigue

- **Main assumption:** proportionality between rate of fatigue $\partial_t m$ and

$$
\mathcal{D} = \langle \sigma, \partial_t \varepsilon \rangle - \partial_t \theta \mathcal{I}[\theta, \varepsilon] - \partial_t \mathcal{F}[\theta, \varepsilon] = -\frac{1}{2} \langle B'(m) \varepsilon, \varepsilon \rangle \partial_t m + \int_0^\infty \langle \partial_t (\varepsilon - s_r Z[\varepsilon]), s_r Z[\varepsilon] \rangle \phi(\theta, r) dr
$$

where \mathcal{F} is the **specific free energy** and \mathcal{I} is the **specific entropy**

- Justified by the so-called **rainflow method for cyclic fatigue accumulation** in uniaxial processes (counts closed hysteresis loops in the loading history - mechanism of energy dissipation)

- In **multiaxial loading processes**? Experimental measurements at the point of material failure: strong temperature increase, manifested by energy dissipation peak (temperature tests are in engineering practice for damage analysis in high frequency regimes (e.g. in aircraft industry))

$$
\left(\frac{1}{C(\theta)} + \frac{1}{2} \langle B'(m) \varepsilon, \varepsilon \rangle \right) \partial_t m = \int_0^\infty \langle \partial_t (\varepsilon - s_r Z[\varepsilon]), s_r Z[\varepsilon] \rangle \phi(\theta, r) dr
$$

- $B'(m) \leq 0$ softening \Rightarrow **singularity**! Material failure in finite time!
Evolution equation for the fatigue

- **Main assumption:** proportionality between rate of fatigue $\partial_t m$ and

$$D = \langle \sigma, \partial_t \varepsilon \rangle - \partial_t \theta I[\theta, \varepsilon] - \partial_t F[\theta, \varepsilon]$$

$$= -\frac{1}{2} \langle B'(m) \varepsilon, \varepsilon \rangle \partial_t m + \int_0^\infty \langle \partial_t (\varepsilon - s_r Z[\varepsilon]), s_r Z[\varepsilon] \rangle \phi(\theta, r) \, dr$$

where F is the **specific free energy** and I is the **specific entropy**

- Justified by the so-called **rainflow method for cyclic fatigue accumulation** in uniaxial processes (counts closed hysteresis loops in the loading history - mechanism of energy dissipation)

- In multiaxial loading processes? Experimental measurements at the point of material failure: strong temperature increase, manifested by energy dissipation peak (temperature tests are in engineering practice for damage analysis in high frequency regimes (e.g. in aircraft industry))

$$\left(\frac{1}{C(\theta)} + \frac{1}{2} \langle B'(m) \varepsilon, \varepsilon \rangle \right) \partial_t m = \int_0^\infty \langle \partial_t (\varepsilon - s_r Z[\varepsilon]), s_r Z[\varepsilon] \rangle \phi(\theta, r) \, dr$$

- $B'(m) \leq 0$ softening \Rightarrow **singularity**! Material failure in finite time!
Evolution equation for the fatigue

- **Main assumption:** proportionality between rate of fatigue $\partial_t m$ and

$$\mathcal{D} = \langle \sigma, \partial_t \varepsilon \rangle - \partial_t \theta \mathcal{I}[\theta, \varepsilon] - \partial_t \mathcal{F}[\theta, \varepsilon]$$

$$= -\frac{1}{2} \langle \mathbf{B}'(m) \varepsilon, \varepsilon \rangle \partial_t m + \int_0^\infty \langle \partial_t (\varepsilon - s_r Z[\varepsilon]), s_r Z[\varepsilon] \rangle \phi(\theta, r) \, dr$$

where \mathcal{F} is the **specific free energy** and \mathcal{I} is the **specific entropy**

- Justified by the so-called **rainflow method for cyclic fatigue accumulation in uniaxial processes** (counts closed hysteresis loops in the loading history - mechanism of energy dissipation)

- In **multiaxial loading processes**? Experimental measurements at the point of material failure: strong temperature increase, manifested by energy dissipation peak (temperature tests are in engineering practice for damage analysis in high frequency regimes (e.g. in aircraft industry))

$$\left(\frac{1}{C(\theta)} + \frac{1}{2} \langle \mathbf{B}'(m) \varepsilon, \varepsilon \rangle \right) \partial_t m = \int_0^\infty \langle \partial_t (\varepsilon - s_r Z[\varepsilon]), s_r Z[\varepsilon] \rangle \phi(\theta, r) \, dr$$

- $\mathbf{B}'(m) \leq 0$ softening \Rightarrow **singularity!** Material failure in finite time!
Evolution equation for the fatigue

- **Main assumption:** proportionality between rate of fatigue $\partial_t m$ and

$$D = \langle \sigma, \partial_t \epsilon \rangle - \partial_t \theta S[\theta, \epsilon] - \partial_t \mathcal{F}[\theta, \epsilon]$$

$$= -\frac{1}{2} \langle B'(m) \epsilon \epsilon \rangle \partial_t m + \int_{0}^{\infty} \langle \partial_t (\epsilon - s_r Z[\epsilon]), s_r Z[\epsilon] \rangle \varphi(\theta, r) dr$$

where \mathcal{F} is the **specific free energy** and S is the **specific entropy**

- Justified by the so-called **rainflow method for cyclic fatigue accumulation** in uniaxial processes (counts closed hysteresis loops in the loading history - mechanism of energy dissipation)

- In **multiaxial loading processes**? Experimental measurements at the point of material failure: strong temperature increase, manifested by energy dissipation peak (temperature tests are in engineering practice for damage analysis in high frequency regimes (e.g. in aircraft industry))

$$\left(\frac{1}{C(\theta)} + \frac{1}{2} \langle B'(m) \epsilon \epsilon \rangle \right) \partial_t m = \int_{0}^{\infty} \langle \partial_t (\epsilon - s_r Z[\epsilon]), s_r Z[\epsilon] \rangle \varphi(\theta, r) dr$$

- $B'(m) \leq 0$ softening \Rightarrow **singularity**! Material failure in finite time!
The model with phase transition

Motivation:
- possibility to account also for decreasing fatigue rate (in view of engineering applications)
- the material can be partially repaired by local melting

How to achieve this goal:

Phase transition equation in the form of melting-solidification law

\[
\gamma \chi_t \in - \partial \chi \mathcal{F}[\varepsilon, \theta, \chi] \quad \chi \in [0, 1]
\]

\[
\chi_0 \in [0, 1] \text{ some initial condition, } A(x, t) := \int_0^t \frac{1}{\gamma} \left(\frac{L}{\beta_c} (\theta - \theta_c) \right) (x, \tau) d\tau
\]

\[
(\chi_t - A_t)(z - \chi) \geq 0 \text{ for all } z \in [0, 1]
\]
The model with phase transition

Motivation:
- possibility to account also for decreasing fatigue rate (in view of engineering applications)
- the material can be partially repaired by local melting

How to achieve this goal:
- account for phase transition in the model
- material fatigue and χ: degree of melting
- the time of failure of the material can be shifted possibly considering a sufficiently large time interval of observation (usual engineering viewpoint) a global solution of the corresponding PDEs system can be found

Phase transition equation in the form of melting-solidification law

$$\gamma \chi_t \in - \partial \chi \mathcal{F} [\varepsilon, \theta, \chi] \quad \chi \in [0, 1]$$

$\chi_0 \in [0, 1]$ some initial condition, $A(x,t) := \int_0^t \frac{1}{\gamma} \left(\frac{L}{\partial \theta} (\theta - \theta_c) \right) (x, \tau) d\tau$

$$(\chi_t - A_t)(z - \chi) \geq 0 \text{ for all } z \in [0, 1]$$
The model with phase transition

- **Motivation:**
 - possibility to account also for decreasing fatigue rate (in view of engineering applications)
 - the material can be partially repaired by local melting

- **How to achieve this goal:**
 - account for phase transition in the model
 - χ material fatigue and χ degree of melting
 - the time of failure of the material can be shifted
 - possibly considering a sufficiently large time interval of observation (usual engineering viewpoint) a global solution of the corresponding PDEs system can be found

- Phase transition equation in the form of melting-solidification law

\[
\gamma \chi_t \in - \partial \chi \mathcal{F}[\varepsilon, \theta, \chi] \quad \chi \in [0, 1]
\]

$\chi_0 \in [0, 1]$ some initial condition, $A(x, t) := \int_0^t \frac{1}{\gamma} \left(\frac{L}{\theta_c} (\theta - \theta_c) \right)(x, \tau) d\tau$

$(\chi_t - A_t)(z - \chi) \geq 0$ for all $z \in [0, 1]$
Motivation:

- possibility to account also for decreasing fatigue rate (in view of engineering applications)
- the material can be partially repaired by local melting

How to achieve this goal:

- account for phase transition in the model
- \(m \) material fatigue and \(\chi \) degree of melting
- the time of failure of the material can be shifted
- possibly considering a sufficiently large time interval of observation (usual engineering viewpoint) a global solution of the corresponding PDEs system can be found

Phase transition equation in the form of melting-solidification law

\[
\gamma \chi_t \in - \partial \chi F[\varepsilon, \theta, \chi] \quad \chi \in [0, 1]
\]

\(\chi_0 \in [0, 1] \) some initial condition, \(A(x, t) := \int_0^t \frac{1}{\gamma} \left(\frac{T}{\theta_c} (\theta - \theta_c) \right) (x, \tau) d\tau \)

\((\chi_t - A_t)(z - \chi) \geq 0 \) for all \(z \in [0, 1] \)
The model with phase transition

Motivation:
- possibility to account also for decreasing fatigue rate (in view of engineering applications)
- the material can be partially repaired by local melting

How to achieve this goal:
- account for phase transition in the model
- \(m \) material fatigue and \(\chi \) degree of melting
- the time of failure of the material can be shifted
- possibly considering a sufficiently large time interval of observation (usual engineering viewpoint) a global solution of the corresponding PDEs system can be found

Phase transition equation in the form of melting-solidification law

\[
\gamma \chi_t \in - \partial \chi \mathcal{F}[\varepsilon, \theta, \chi] \quad \chi \in [0, 1]
\]

\(\chi_0 \in [0, 1] \) some initial condition, \(A(x, t) := \int_0^t \frac{1}{\gamma} \left(\frac{L}{\theta_c} (\theta - \theta_c) \right) (x, \tau) \, d\tau \)

\[
(\chi_t - A_t)(z - \chi) \geq 0 \text{ for all } z \in [0, 1]
\]
The model with phase transition

Motivation:
- possibility to account also for decreasing fatigue rate (in view of engineering applications)
- the material can be partially repaired by local melting

How to achieve this goal:
- account for phase transition in the model
- m material fatigue and χ degree of melting
- the time of failure of the material can be shifted
- possibly considering a sufficiently large time interval of observation (usual engineering viewpoint) a global solution of the corresponding PDEs system can be found

Phase transition equation in the form of melting-solidification law

$$
\gamma \chi_t \in -\partial_\chi F[\varepsilon, \theta, \chi] \quad \chi \in [0, 1]
$$

$\chi_0 \in [0, 1]$ some initial condition, $A(x, t) := \int_0^t \frac{1}{\gamma} \left(\frac{L}{\rho c_v} (\theta - \theta_c) \right) (x, \tau) d\tau$

$(\chi_t - A_t)(z - \chi) \geq 0$ for all $z \in [0, 1]$
The model with phase transition

- **Motivation:**
 - possibility to account also for decreasing fatigue rate (in view of engineering applications)
 - the material can be partially repaired by local melting

- **How to achieve this goal:**
 - account for phase transition in the model
 - m material fatigue and χ degree of melting
 - the time of failure of the material can be shifted
 - possibly considering a sufficiently large time interval of observation (usual engineering viewpoint) a global solution of the corresponding PDEs system can be found

- Phase transition equation in the form of melting-solidification law

\[
\gamma \chi_t \in -\partial_\chi \mathcal{F}[\varepsilon, \theta, \chi] \quad \chi \in [0,1]
\]

\[
\chi_0 \in [0,1] \text{ some initial condition, } A(x,t) := \int_0^t \frac{1}{\gamma} \left(\frac{L}{\theta_c} (\theta - \theta_c) \right) (x, \tau) d\tau
\]

\[
(\chi_t - A_t)(z - \chi) \geq 0 \text{ for all } z \in [0,1]
\]
The model with phase transition

- **Motivation:**
 - possibility to account also for decreasing fatigue rate (in view of engineering applications)
 - the material can be partially repaired by local melting

- **How to achieve this goal:**
 - account for phase transition in the model
 - m material fatigue and χ degree of melting
 - the time of failure of the material can be shifted
 - possibly considering a sufficiently large time interval of observation (usual engineering viewpoint) a global solution of the corresponding PDEs system can be found

- Phase transition equation in the form of melting-solidification law

\[
\gamma \chi_t \in - \partial \chi \cdot \mathcal{F}[\varepsilon, \theta, \chi], \quad \chi \in [0, 1]
\]

\[
\chi_0 \in [0, 1] \text{ some initial condition, } A(x, t) := \int_0^t \frac{1}{\gamma} \left(\frac{L}{\theta_c} (\theta - \theta_c) \right) (x, \tau) \, d\tau
\]

\[
(\chi_t - A_t)(z - \chi) \geq 0 \text{ for all } z \in [0, 1]
\]
The model with phase transition

- **Motivation:**
 - possibility to account also for decreasing fatigue rate (in view of engineering applications)
 - the material can be partially repaired by local melting

- **How to achieve this goal:**
 - account for phase transition in the model
 - m material fatigue and χ degree of melting
 - the time of failure of the material can be shifted
 - possibly considering a sufficiently large time interval of observation (usual engineering viewpoint) a global solution of the corresponding PDEs system can be found

- Phase transition equation in the form of melting-solidification law

\[
\gamma \chi_t \in -\partial_\chi \mathcal{F}[\varepsilon, \theta, \chi] \quad \chi \in [0, 1]
\]
\[
\chi_0 \in [0, 1] \text{ some initial condition, } A(x, t) := \int_0^t \frac{1}{\gamma} \left(\frac{L}{\theta_c} (\theta - \theta_c) \right) (x, \tau) d\tau
\]
\[
(\chi_t - A_t)(z - \chi) \geq 0 \text{ for all } z \in [0, 1]
\]
The model with phase transition

- **Motivation:**
 - possibility to account also for decreasing fatigue rate (in view of engineering applications)
 - the material can be partially repaired by local melting

- **How to achieve this goal:**
 - account for phase transition in the model
 - \(m \) material fatigue and \(\chi \) degree of melting
 - the time of failure of the material can be shifted
 - possibly considering a sufficiently large time interval of observation (usual engineering viewpoint) a global solution of the corresponding PDEs system can be found

- Phase transition equation in the form of melting-solidification law

\[
\gamma \chi_t \in -\partial_\chi \mathcal{F}[\varepsilon, \theta, \chi] \quad \chi \in [0, 1]
\]

\[
\chi_0 \in [0, 1] \text{ some initial condition, } A(x, t) := \int_0^t \frac{1}{\gamma} \left(\frac{L}{\theta_c} (\theta - \theta_c) \right) (x, \tau) d\tau
\]

\[
(\chi_t - A_t)(z - \chi) \geq 0 \text{ for all } z \in [0, 1]
\]
The model with phase transition

Motivation:
- possibility to account also for decreasing fatigue rate (in view of engineering applications)
- the material can be partially repaired by local melting

How to achieve this goal:
- account for phase transition in the model
- m material fatigue and χ degree of melting
- the time of failure of the material can be shifted
- possibly considering a sufficiently large time interval of observation (usual engineering viewpoint) a global solution of the corresponding PDEs system can be found

Phase transition equation in the form of melting-solidification law

$$\gamma \chi_t \in -\partial_{\chi} \mathcal{F}[\varepsilon, \theta, \chi], \quad \chi \in [0, 1]$$

$$\chi_0 \in [0, 1] \text{ some initial condition, } A(x, t) := \int_0^t \frac{1}{\gamma} \left(\frac{L}{\theta_c} (\theta - \theta_c) \right) (x, \tau) d\tau$$

$$(\chi_t - A_t)(z - \chi) \geq 0 \text{ for all } z \in [0, 1]$$
The model with phase transition

- **Motivation:**
 - possibility to account also for decreasing fatigue rate (in view of engineering applications)
 - the material can be partially repaired by local melting

- **How to achieve this goal:**
 - account for phase transition in the model
 - m material fatigue and χ degree of melting
 - the time of failure of the material can be shifted
 - possibly considering a sufficiently large time interval of observation (usual engineering viewpoint) a global solution of the corresponding PDEs system can be found

- Phase transition equation in the form of melting-solidification law

 \[\gamma \chi_t \in -\partial_\chi \mathcal{F}[\varepsilon, \theta, \chi] \quad \chi \in [0, 1] \]

 \[\chi_0 \in [0, 1] \text{ some initial condition, } A(x, t) := \int_0^t \frac{1}{\gamma} \left(\frac{L}{\theta_c} (\theta - \theta_c) \right) (x, \tau) d\tau \]

 \[\chi \in \mathcal{S}_{[0,1]}[\chi_0, A] \quad \mathcal{S}_{[0,1]} \text{ is a shifted stop} \]
Thermodynamical consistency

- If we introduce $\mathcal{F}[\varepsilon, \theta, \chi]$ specific free energy, $\mathcal{S}[\varepsilon, \theta, \chi]$ specific entropy and $\mathcal{U}[\varepsilon, \theta, \chi]$ internal energy we are able to show that the first and second principles of thermodynamics are satisfied

\[
\frac{\partial}{\partial t} \mathcal{U}[\varepsilon, \theta, \chi] + \text{div} q = \langle \sigma, \varepsilon_t \rangle \quad \text{(energy conservation)}
\]

\[
\frac{\partial}{\partial t} \mathcal{S}[\varepsilon, \theta, \chi] + \text{div} \frac{q}{\theta} \geq 0, \quad \text{(Clausius-Duhem inequality)}
\]

- Evolution equation for m:

\[
(C - \langle B'(m)\varepsilon, \varepsilon \rangle) m_t = -h(\chi_t) + \int_{0}^{\infty} \langle \partial_t (\varepsilon - s_r Z[\varepsilon])s_r Z[\varepsilon] \rangle \varphi(\theta, r) \, dr
\]

- allow the possibility of decreasing rate (i.e. $m_t < 0$) but only in the case if χ grows faster than the plastic dissipation rate (strong melting)
- external heat source (nonlinear boundary condition)
Thermodynamical consistency

- If we introduce $F[\varepsilon, \theta, \chi]$ specific free energy, $S[\varepsilon, \theta, \chi]$ specific entropy and $U[\varepsilon, \theta, \chi]$ internal energy we are able to show that the first and second principles of thermodynamics are satisfied

$$\frac{\partial}{\partial t} U[\varepsilon, \theta, \chi] + \text{div} q = \langle \sigma, \varepsilon_t \rangle \quad \text{(energy conservation)}$$

$$\frac{\partial}{\partial t} S[\varepsilon, \theta, \chi] + \text{div} \frac{q}{\theta} \geq 0, \quad \text{(Clausius-Duhem inequality)}$$

- Evolution equation for m:

$$(C - \langle B'(m)\varepsilon, \varepsilon \rangle) m_t = -h(\chi_t) + \int_0^\infty \langle \partial_t (\varepsilon - s_{rZ}[\varepsilon])s_{rZ}[\varepsilon] \rangle \varphi(\theta, r) \, dr$$

- allow the possibility of decreasing rate (i.e. $m_t < 0$) but only in the case if χ grows faster than the plastic dissipation rate (strong melting)

- external heat source (nonlinear boundary condition)
Thermodynamical consistency

- If we introduce $\mathcal{F}[\varepsilon, \theta, \chi]$ specific free energy, $\mathcal{S}[\varepsilon, \theta, \chi]$ specific entropy and $\mathcal{U}[\varepsilon, \theta, \chi]$ internal energy we are able to show that the first and second principles of thermodynamics are satisfied

\[
\frac{\partial}{\partial t} \mathcal{U}[\varepsilon, \theta, \chi] + \text{div} \mathbf{q} = \langle \sigma, \varepsilon_t \rangle \quad \text{(energy conservation)}
\]

\[
\frac{\partial}{\partial t} \mathcal{S}[\varepsilon, \theta, \chi] + \text{div} \frac{\mathbf{q}}{\theta} \geq 0, \quad \text{(Clausius-Duhem inequality)}
\]

- Evolution equation for m:

\[
(C - \langle B'(m)\varepsilon, \varepsilon \rangle) m_t = -h(\chi_t) + \int_0^\infty \langle \partial_t (\varepsilon - s_r Z[\varepsilon])s_r Z[\varepsilon] \rangle \phi(\theta, r) \, dr
\]

- allow the possibility of decreasing rate (i.e. $m_t < 0$) but only in the case if χ grows faster than the plastic dissipation rate (strong melting)
- external heat source (nonlinear boundary condition)
If we introduce $\mathcal{F}[\epsilon, \theta, \chi]$ specific free energy, $\mathcal{S}[\epsilon, \theta, \chi]$ specific entropy and $\mathcal{U}[\epsilon, \theta, \chi]$ internal energy we are able to show that the first and second principles of thermodynamics are satisfied.

\[
\frac{\partial}{\partial t} \mathcal{U}[\epsilon, \theta, \chi] + \text{div} q = \langle \sigma, \epsilon_t \rangle \quad \text{(energy conservation)}
\]

\[
\frac{\partial}{\partial t} \mathcal{S}[\epsilon, \theta, \chi] + \text{div} \frac{q}{\theta} \geq 0, \quad \text{(Clausius-Duhem inequality)}
\]

Evolution equation for m:

\[
(C - \langle B'(m)\epsilon, \epsilon \rangle) \, m_t = -h(\chi_t) + \int_0^\infty \langle \partial_t (\epsilon - s_{rZ}[\epsilon]) s_{rZ}[\epsilon] \rangle \varphi(\theta, r) \, dr
\]

allow the possibility of decreasing rate (i.e. $m_t < 0$) but only in the case if χ grows faster than the plastic dissipation rate (strong melting)
If we introduce \(F[\epsilon, \theta, \chi] \) specific free energy, \(S[\epsilon, \theta, \chi] \) specific entropy and \(U[\epsilon, \theta, \chi] \) internal energy we are able to show that the first and second principles of thermodynamics are satisfied.

\[
\frac{\partial}{\partial t} U[\epsilon, \theta, \chi] + \text{div} q = \langle \sigma, \epsilon_t \rangle \quad \text{(energy conservation)}
\]

\[
\frac{\partial}{\partial t} S[\epsilon, \theta, \chi] + \text{div} \frac{q}{\theta} \geq 0, \quad \text{(Clausius-Duhem inequality)}
\]

Evolution equation for \(m \):

\[
(C - \langle B'(m)\epsilon, \epsilon \rangle) m_t = -h(\chi_t) + \int_0^\infty \langle \partial_t (\epsilon - s_{rZ}[\epsilon]) s_{rZ}[\epsilon] \rangle \varphi(\theta, r) \, dr
\]

- allow the possibility of decreasing rate (i.e. \(m_t < 0 \)) but only in the case if \(\chi \) grows faster than the plastic dissipation rate (strong melting)
- external heat source (nonlinear boundary condition)
Thermodynamical consistency

- If we introduce $\mathcal{F}[\varepsilon, \theta, \chi]$ specific free energy, $\mathcal{S}[\varepsilon, \theta, \chi]$ specific entropy and $\mathcal{U}[\varepsilon, \theta, \chi]$ internal energy we are able to show that the first and second principles of thermodynamics are satisfied

$$\frac{\partial}{\partial t} \mathcal{U}[\varepsilon, \theta, \chi] + \text{div} q = \langle \sigma, \varepsilon_t \rangle \quad \text{(energy conservation)}$$

$$\frac{\partial}{\partial t} \mathcal{S}[\varepsilon, \theta, \chi] + \text{div} \frac{q}{\theta} \geq 0, \quad \text{(Clausius-Duhem inequality)}$$

- Evolution equation for m:

$$Cm_t = -h(\chi_t) + \int_0^\infty \langle \partial_t (\varepsilon - s_{rZ}[\varepsilon]) s_{rZ}[\varepsilon] \rangle \phi(\theta, r) \, dr$$

- allow the possibility of decreasing rate (i.e. $m_t < 0$) but only in the case if χ grows faster than the plastic dissipation rate (strong melting)

- external heat source (nonlinear boundary condition)
Conclusion

- Rainflow method for fatigue evaluation in elastoplastic materials (uniaxial cyclic loading) allow to consider dissipated energy as a measure for fatigue
- The solution cannot be expected to exist globally: singularities (thermal shocks) occur in finite time
- Phase transition in the model to account also for decreasing fatigue rate
- The time of failure can be shifted and considering a sufficiently large time interval of observation (usual engineering viewpoint) a global solution of the corresponding PDEs system can be found
- The resulting full system of energy and momentum balance equations is consistent with the first and the second principles of thermodynamics; mathematical analysis of the model is work in progress

Spring School on “Rate-independent evolutions and hysteresis modelling”, Milano, May 27-31, 2013
http://www.mat.unimi.it/users/eleuteri/hystri2013.html
Conclusion

- Rainflow method for fatigue evaluation in elastoplastic materials (uniaxial cyclic loading) allow to consider dissipated energy as a measure for fatigue.
- The solution cannot be expected to exist globally: singularities (thermal shocks) occur in finite time.
- Phase transition in the model to account also for decreasing fatigue rate.
- The time of failure can be shifted and considering a sufficiently large time interval of observation (usual engineering viewpoint) a global solution of the corresponding PDEs system can be found.
- The resulting full system of energy and momentum balance equations is consistent with the first and the second principles of thermodynamics; mathematical analysis of the model is work in progress.

Spring School on “Rate-independent evolutions and hysteresis modelling”, Milano, May 27-31, 2013
http://www.mat.unimi.it/users/eleuteri/hystri2013.html
Conclusion

- Rainflow method for fatigue evaluation in elastoplastic materials (uniaxial cyclic loading) allow to consider dissipated energy as a measure for fatigue.
- The solution cannot be expected to exist globally: singularities (thermal shocks) occur in finite time.
- Phase transition in the model to account also for decreasing fatigue rate.
- The time of failure can be shifted and considering a sufficiently large time interval of observation (usual engineering viewpoint) a global solution of the corresponding PDEs system can be found.
- The resulting full system of energy and momentum balance equations is consistent with the first and the second principles of thermodynamics; mathematical analysis of the model is work in progress.

Spring School on “Rate-independent evolutions and hysteresis modelling”, Milano, May 27-31, 2013
http://www.mat.unimi.it/users/eleuteri/hystri2013.html
Conclusion

- Rainflow method for fatigue evaluation in elastoplastic materials (uniaxial cyclic loading) allow to consider dissipated energy as a measure for fatigue.
- The solution cannot be expected to exist globally: singularities (thermal shocks) occur in finite time.
- Phase transition in the model to account also for decreasing fatigue rate.
- The time of failure can be shifted and considering a sufficiently large time interval of observation (usual engineering viewpoint) a global solution of the corresponding PDEs system can be found.
- The resulting full system of energy and momentum balance equations is consistent with the first and the second principles of thermodynamics; mathematical analysis of the model is work in progress.

Spring School on “Rate-independent evolutions and hysteresis modelling”, Milano, May 27-31, 2013
http://www.mat.unimi.it/users/eleuteri/hystri2013.html
Conclusion

- Rainflow method for fatigue evaluation in elastoplastic materials (uniaxial cyclic loading) allow to consider dissipated energy as a measure for fatigue.
- The solution cannot be expected to exist globally: singularities (thermal shocks) occur in finite time.
- Phase transition in the model to account also for decreasing fatigue rate.
- The time of failure can be shifted and considering a sufficiently large time interval of observation (usual engineering viewpoint) a global solution of the corresponding PDEs system can be found.
- The resulting full system of energy and momentum balance equations is consistent with the first and the second principles of thermodynamics; mathematical analysis of the model is work in progress.

Spring School on “Rate-independent evolutions and hysteresis modelling”, Milano, May 27-31, 2013
http://www.mat.unimi.it/users/eleuteri/hystri2013.html
Conclusion

- Rainflow method for fatigue evaluation in elastoplastic materials (uniaxial cyclic loading) allow to consider dissipated energy as a measure for fatigue.
- The solution cannot be expected to exist globally: singularities (thermal shocks) occur in finite time.
- Phase transition in the model to account also for decreasing fatigue rate.
- The time of failure can be shifted and considering a sufficiently large time interval of observation (usual engineering viewpoint) a global solution of the corresponding PDEs system can be found.
- The resulting full system of energy and momentum balance equations is consistent with the first and the second principles of thermodynamics; mathematical analysis of the model is work in progress.

Spring School on “Rate-independent evolutions and hysteresis modelling”, Milano, May 27-31, 2013

http://www.mat.unimi.it/users/eleuteri/hystri2013.html